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Orbit Determination for a Lunar Satellite’ 

Abstract 

examined from the point of view of geometric determinacy of 
the data. Various data-type combinations are considered, 
including radar range, radar range-rate, and optical. Using 
appropriate coordinate systems, it is shown how the condi- 
tion equations be set up and ho,\. the number of data 
points required for bolution may be calculated. Finally, it is 
shown how these conhiderations are related to the statistical 
problem of determining the orlit from noisy data. 

Introduction 

This results in the degeneracy of certain matrices used 

cedure to break down. 
The purpose here is to examine geometric situations 

aTl,ich inl-olve this end it is 
convenient to evaluate orbit determination from the 
point of view of the minimum number of observations 
of a given type or types required to establish an orbit. 
From the equations for the parameters, it will then be 

The orbit determination problem for a orbit determination and causes the pro- 

of degeneracy. To 

The problem of determining an orbit for a lunar 
satellite differs from that for an Earth satellite or a 
space probe primarily in the geometry involved. Be- 
cause relative positions of observing stations and satel- 
lite are limited, conditions arise in which the orbit 
may be difficult to establish4ifEcult in the sense 
that  it  is mathematically not well determined. The 
questions then arise as to how- much of the orbit can 
be determined by the available data, and as to what 
additional data must be obtained to complete the 
orbit. 

This analysis studies these questions systematically, 
but without numerical computation. 

F’ormulation of the Problem 
As in any other type of orbit determination, the 

problem for the lunar satellite is solved by an iterative 
procedure based on differential correctioils to an as- 
sumed orbit. The orbit is defined by six associated 
parameters, perhaps the set of osculating elements a, e ,  
i, Q ,  w ,  x or perhaps the position and velocity x0, yo, 
zo , &I, io, io at time t = 0. One searches for that orbit 
which best fits the observations, where “best fit” usually 
means, in the sense of least squares, that the sum of the 
squares of the residuals is a minimum. 

In  general, there will be many more observations than 
the minimum required for geometrical determination 
of the six orbital parameters. However, sometimes 
because of geometric factors, certain of the orbital 
parameters cannot be found with the available data. 
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clear as to which are determinate and which are not. 
Only the simplest geometric considerations are in- 

cluded. Effects of parallax of stations or of orbit, of 
non-Keplerian orbit, etc., are neglected. Further, the 
problem of determining noiiorbital parameters is not 
condered . 

Equations 

The problem is first set up in full geometric generality, 
in terms of appropriate coordinate systems. The X ,  Y, 
Z coordinate system, shown in Figs. 1 and 2, is non- 
rotating and has its origin fixed at the center of mass 
of the Jloon. The E ,  q, < coordinates are tied to the 
plane of the satellite orbit, with $ in the direction of 

ccL&a Le i iu Liie uirection or 
motion, and < perpendicular to 4, 7 forming a right- 
handed system. A third set of coordinates, I, y, z, is 
tied to the observer-Moon line of sight, so that z is 
measured along the observer-Moon line, the I, y plane 
is perpendicular to z, and the origin of coordinates is 
again at the center of mass of the Moon. 

If the probe’s coordinates in the C;, q, { system are 
C;, 7, 0, then the coordinates in the other two systems 
are given by 

.. nor;contrrr I n L  -:-LA - -  
. - - - - - . - - - I  ., uv 

E) = B(i) 
in which A and B are the appropriate rotation matrices 
involving the Euler angles identified in Figs. 1 and 2. 
Specificially , 

12 

B = (% VI: ,!) (3) 
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A = 6, rTi2 r% i-, 6 2  .,I 
with 

lI = cos Q cos w - sin Q sin w cos i' 
ml = sin cos w + cos $2 sin w cos i 
n, = sin w sin i 1) 
I, = -cos R sin w - siii Q cos w cos i\l 

m2 = -sin Q sin w + cos Q cos w cos i 
n2 = cos w sin i 

1, = sin Q sin i 1 
ma = -cos R sin ii 
n, = cos i I 

(4)  

and correspoiiding formulas for the conipoiients of A 
using barred letters. 

Derivatives are obtained by the usual multiplication 
rule, giving 

Equations ( 1 ), ( 2 ) ,  and (8) exhibit the observablcs, 
r, y, 2 ,  2,  y, Z in ternis of the orbit elements. Presumably, 
if enough values of the observables are otltained (cor- 
responding to observations at dift'ercnt times) then 
the orbit parameters can bc computed. 

To complete the represcntation, the following for- 
mulas are also needed : 

= a (cos E - e) 7 = a d r -  e2 sin I:' 

q =  ~ 

~- 
a d 1  - e'n cos E: (9) 

(10) 

an sill E E = -~ 
1 - e cos E 1 - e cos E 

nt + x = E - e sin I:' 

I:' = eccentric anonialy 
a = semi-major axis 
e = eccentricity 
n = mean angular rate 
t = time. 

in which 

The equations above, though appropriate for machine 
computation, arc much too complicated for direct analy- 
sis. In the folloxing paragraphs, the equations are 
simplified, with the hope of extracting some qualita- 
tive information. 111 particular, it is assumed that all 
observatioiis are made from thc same location, that 
the observer is very far from the orbit, and that the 
orbital parameters are constant over the period of 
observation. 

In  any particular situation, there will bv availahle 
a number of observations of the satellite, yielding 
values of observables C Y , ,  p C  , etc., a t  times t ,  . For the 
prcsciit discussion the obs-rvablcs will in  general be 
the coordinates x, y, z aud t!i- velocities 2, y, Z or sonic 

I 1 s o .  of 
Type of Data Observables Observations 

I 1 Required 

Optical or angle radar 
Range radar 
Iloppler radar 
Angle radar plus dopplrr 
Range radar plus doppler 

~ _ _ _ ~ -  -__ ~ 

subsct of thee .  Each observable gives rise to two equa- 
tions, the first obtained from Eq. ( 2 )  or (8), the second 
from E([. (10). It then beconies necessary to determine 
also the eccentric anonialy, E,  at each time point. 

Thus, for the orbit determination problem with li 
values of observables, at 7 different times, there will be 
a system of k + T equations to solve. If the number of 
unhnon-11 parameters, p ,  is greater than li + r ,  the 
system is indeterminate; if p is less than I; + r it is 
over-dctcrmined and should be solved by statistical 
procedures; if p is ecliial to I, + T ,  it is just deterniinate 
(in all ?asps ahzumiiig no dcgcncracy ). 

General Comments 011 Determinacy 
How many obsrrvatioiis are requircd to drterrnine 

an orbit? In  the present context, the orbit is presumed 
to be the oscillating orbit, atid the orbital elements are 
presumed to bc constant, or a t  least changing so slowly 
that for the period of observation, the changes may be 
neglected. Tlic first step iii answering the question, 
theti, is to refer to Eel. ( I ) ,  ( 2 ) ,  mid (8). 

The term, obscrvation, is talien to mean the set (or 
subset) of the quantities .c, y, z ,  i, y, i determined at  
any giveii instant of time, t .  The particular subset 
associated with an observation depends, of course, on 
the type of equipment used for the observation. With 
optical equipment or with angle radar, it may be as- 
sumed that the subset consists of x and y. \Vith doppler 
radar, the subset consists of the single variable, Z,  ob- 
tained as i? - I jo  where R is the range to the ob- 
server arid Ro the range from the AIoon's center 
to the observer. Similarly, range radar yields z = R 
- Ro. 

To find the number of observations required, it is 
sufficient, therefore, to note the number of parameters 
determined by each observation. I'or optical data, the 
limitation of two parameters per observation necessi- 
tates three obsrrvations to establish six orbital ele- 
ments. For doppler radar data, tlie requirement would 
be for six observations to establish all six orbital parani- 
etcrs. However, in sonie situations only five of the 
six are deterniiiiate. -1 combination of doppler and 
angle radar yielding .T, y and Z requires two obser1.a- 
tions. These requiremeiits, summarizcd in Table 1, arc 
the mininium for determinacy in each case and iniply no 
redundancy and no degeneracy. 
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Doppler Data Alone 
The minimum of six observations required to de- 

termine an orbit using doppler data alone (if the orbit 
were determinate from such data) must be spaced far 
enough apart in time to ensure uncorrelated data and 
far enough apart in position to ensure significant meas- 
urements. 

Vhen the observations are correlated or when the 
spatial separation is not adequate, it may take more 
than six observations to determine a complete orbit, 
or in some cases only a partial orbit will be determinate. 
Kote, however, that the doppler data curve will im- 
mediately yield the period and, hence the semi-major 
axis of the orbit (see Eqs. (13) and (14)). 

Futherniore, it may soinetimes be desirable to use the 
data to determine not only the orbit but also certain 
quantities that influence the orbit determination. These 
include, for example, coordinates of the observation 
stations, instrunlent biases, gravity field constaiits, and 
lunar orbit constants. Of course, for this purpose more 
data points and better precision are required than for 
basic orbit determination. 

To study the case of doppler data alone, it is con- 
venient to  consider in order each of three cases of 
increasing complexity. In  each case it is assumed that 
there is only one observing station, located far from the 
observed orbit. 

Case 1: Stationary Jloon 
In  this case, there is no loss in generality in choosing 

the X ,  Y ,  Z coordinate axes to be coincident with the 
2, y, z axes. Thus, ‘i = W = fi = 0. Equation (8) then 
reduces (for the i-component) to 

. (-sin w sin E + cos w cos EV’~ - e?) 

while Eq. (10) remains nt + x = E - e sin E. 

FIG. 1 

FIG. 2 

Here f is comidered to be the observable (the JIoon 
is so distant that the parallax of the orbit is assumed 
negligible). The first fact to be noticed in these equa- 
tioils is that the node, R, does not appear, and there- 
fore cannot be determined. However, from a superficial 
look at least, it appears that the remaining five ele- 
ments a,  e ,  sin i, sin w ,  and x are uncoupled and can 
be determined provided only that five uncorrelated 
measurements a t  five different times are available. 
Sote that the mean motion, n, is a function of the 
semi-major axis, a,  and that n appears alone in Eq. ( 10). 
This fact should decouple the quantities a and sin i. 

To summarize, then, it appears that for the stationary 
)loon, five doDder oh*rx--ntinne 9- ~1l”cic:it ts k 
termine an orbit, except for the node, R, which is not 
determinate with any number of doppler observations. 

The literature contains several methods of orbit de- 
termination using doppler data alone. It may be of 
interest here to show the relation between the present 
discussion and one of these methods. 

Since doppler data is usually obtained almost con- 
tinuously, it is of interest to consider the possibility 
of being able to identify the maxima and minima of 
Z. To use this type of data, it is convenient to rewrite Eq. 
(11) in terms of the true anomaly, v, as 

na sin i 
4 1  - e2 

Z = ___ [cos (21  + w )  + e cos wl (12) 

Then, proceeding as in Smart (Ref. 1, p. 339), it is 
possible to determine e,  w ,  and nu sin i without resort- 
ing to the time equation. If in addition, the gravity 
constant of the Jloon, p, is known, then by measuring 
the period, P ,  and using the relations 

27r 
P 

n = -  

and 
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(14) 
113 -213 

U = P  n 

it is possible to evaluate a and sin i separately. Thus, 
by using special points on the Z vs. t curve, i t  is possible 
to simplify the computation and obtain some of the 
orbit elements without working through the time equa- 
tion and computing eccentric anomaly. On the other 
hand, not all the information contained in the data is 
being extracted, for as was first pointed out, all the 
elements except fi are determinate, even though the 
mass of the AIoon is unknown. 

Case 2: Moon Moving Rad ia l l y  and at  Constant Speed 

Let T be the observer's distance to the satellite, and 
R his distance to the center of mass of the Moon. Then 
the analogue to Eg. ( 11 ) is 

with Respect to Observer 

nu sin E i.=zI+ 
1 - e c o s E  (15) 

.(-sin w sin E + cos w cos ~ 1 / 1  - e?) 

in which R is a constant. If R is assumed known, the 
problem reduces to Case 1. If k is assumed unknown, 
then one additional observation is required to determine 

In contrast to this procedure, the method in Smart 
(Ref. 1, Fig. 133)  uses a graphical computation to 
find the value of R .  

Case 3: Moon llloving with Angztlar Velocity e 
Choose the J,  y, z axes initially coincident with the 

X ,  Y, Z axes, and such that the Y-axis points in the 
direction of motion, the Z-axis in the observer-\loon 
direction, and the X-axis normal to the plane of motion. 
Then 

€?. 

w = i l = 0  (16) 

and 

i = et (17) 

The i equation from Eq. (8) is 

an 
1 - e cos E' 

Z =  [ -  ( ttil sin et + nl COS e t )  sin E 

+ ( I N ,  sin et + n2 cos et).\/i - e2 cos El 

+ ae[(w1 cos et - nl sin e t )  (cos E - e )  

+ ( t u 2  cos et - n2 sin et).\/i - e? sin El 

Here m l  and ?tl are functions of w ,  fi, and i (cf. Eqs. 
6 and 7 ) .  It is reasonable to expect that all six orbit 
elements may be determined by the system of Eqs. 
(18) and (10) provided only that a t  least six data 
points are available. However, there remains an un- 
certainty in the direction o f  the satellite motion, which 
is seen as follows: 

-Assume, for esample, that the solution of Eqs. (10) 
and (18) yields a set of values ml , m? , nl and n 2 .  It 
is easily seen that, though these values determine W ,  a, 

(18) 
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and i almost completely, they do allow an ambiguity, 
which amounts to an  uncertainty in the direction of 
motion. Thus, from Eqs. (6)  and (7)  

sin Q cos w + cos $2 sin w cos i = ml 
-sin fi sin w + cos 12 cos w cos i = m2 1 (19) sin w sin i = nl ( 

cos w sin i = n2 J 
can be solved to yield 

nil nl - wi2n2 cos It = 4- cos i 

(21 

in which 

0 5 i 5 180" 

0 5 w < :S(iO0 

0 5 a < :360". 

Equation (20) fails to define the difference between 
first and second quadrant i. This reflects in the cor- 
responding ambiguity in 12 in Eq. ( 2 2 ) .  

As a practical matter in orbit determination, the 
uncertainty in direction should cause no difficulty, since 
the differential correction procedure presumes the direc- 
tion of motion I m n v n  a priori .  

In summary, then, using six doppler observations on 
the orbit of a satellite of a moving Aioon, it should be 
possible to completely detine the orbit, including all 
six orbital elements. Howewr, there is an uncertainty 
in the direction of motion that can be resolved only by 
a priori  information, normally avaiiable in the dif- 
ferential correction procedure. 

( 2 3 )  

Optical Data 
Using optical equipment, the primary measurements 

are angles. By projecting on the J ,  y plane (P'ig. 2 )  
these angles may be interpreted as distances measured 
in this plane. For the satellite of a distant body, the 
error introduced by assuming this to be a parallel 
projection is small, and may he neglected for the present 
discussion. The dilhculty of observing a lunar satellite 
should, of course, be borne in niind. 

Equations (1) and ( 2 )  express x and y as functions 
of the orbital elements of the satellite. Sine equations 
are obtained from three observations, three each for 
J, y, and t ,  where the t equations are of the form of 
Eq. ( 10). Thcre are nine unlino\f n (pantitics in these 
equations, the six orbital elenicnts a,  e ,  2, w ,  a, and X ,  
plus the three values of the eccentric anomaly, E. 



Case 1:  Stationary Moon 

Choose coordinate axes as in Case 1 of the preceding 
section. so that the equrttions for 1: and y from Eq. (2) 
become 

x = a[ll(cos E - e )  + 12d1 - e? sin E] 

y = a[ml(cos E - e )  + m 2 d l  - e2 sin E ] !  
1 (2-1) 

and the t equation is 

nt = - X  + E - e sin E (25 1 
I n  general, Eqs. (21) and (25) can be expected to yield 
a complete determination of the orbit, except for a n  
ambiguity in the direction of motion. For, assuming 
1 1 ,  1 2 ,  ml , and mz known, then w ,  Q, and i are to  be 
determined from the system, 

(26 1 1 cos Q cos w - sin Q sin w cos i = Zl 
sin Q cos w + cos Q sin w cos i = ml 

-cos 

-sin Q sin w + cos Q cos w cos i = m2J 

from which it is possible to solve for sin Q and cos s2 to  
obtain 

sin w - sin II cos w cos i = 12 

I, cos w + G sin w ] sin Q = -cos i I 

and from which 51 and w can be eliminated. Thus, cos i 
is found by solving the quadratic equation 

Using the value of cos i so obtained, Eq. (27) then 
yields values for tan w, sin Q and cos w. But this leaves 
the quadrants of Q and w uncertain, i.e., the direction 
of motion is not determined. Thus, for angle data (two 
angles per observation) with a stationary Moon, the 
satellite orbit is completely determined by three ob- 
servations except for the direction of motion. -4gain, 
the use of differential corrections yields the additional 
data necessary to determine the direction of motion. 

Case 2: Moon dloiing at Constant Angular T'elocity S 
Vsiiig the coordinates of Case 3 of the preceding sec- 

tion, the equations for the displacements I and y may 
be written 

I x = x  
\ 

y = I' cos et - z sin S t j  

where 

x' = a[k(cos E - e )  + 1 2 4 1  - e? sin E] 

Y = a[ml(cos E - e )  + m z 4 1  - e2 sin E] 1 (30) 

Z = a[nl(cos E - e )  + n 2 4 1  - e2 sin E] J 

1 

and 

n t =  - x + E - e s i n E  (31) 

The change from Case 1 above is that here the additional 
quantities n1 and nz are determined. Thus, the exact 
quadrants of the angles w and Q can be found, and the 
problem becomes completely determinate. 

Range Data Plus Range-Rate Data 
The appropriate equations in this case are taken from 

the z component of Eq. ( 2 )  and the Z component of 
Ey. (8).  For the simplest case, the stationary Moon, 
the equations reduce to 

z = a sin i 1 
- e sin w ]  I . [sin w cos E + cos w sin E 

an sin i 
7 =  - 1 - e c o s E  

i (32) 

- [ -  sin w sin E + cos w cos E mJJ 
The significant feature of these z and Z equations is that 
the node angle, Q, does not appear; thus, the node cannot 
he determined from range and range-rate data for the 
case of a stationary Moon. 

Since three sets of observations yield nine equations 
[six from three sets of Eq. ( 3 2 )  and three time equa- 
tions] for the determination of only eight parameters, 

well determined. Even the quadrant of w should be 
obtainable since each of sin w and cos w can be solved 
for separately. 

Both range and range-rate data yield the same type 
of information as shown in Eq. ( 3 2 ) .  However, range 
data has the advantage of yielding, in addition, the 
absolute distance to the orbit. Thus, the first of Eq. 
( 3 2 )  can be written [see Eq. (15)] 

I' = R + a sin i[sin w cos E 

it is apparent t h a t  tho nrhit, ~ y y t  fer 2, i:: zzff.,dcr,t:-- Y 

( 3 3 )  

in which R is the distance to the center of mass of the 
1\Ioon. Considering R as an  additional unknown in the 
equations, one can then evaluate it as part of the orbit 
determination procedure. 

General Consideration 

In the previous sections equations for orbit deterniin- 
ation were eshibited in a form meant to show the alge- 
braic or geometric determinacy as simply as possible. S o  
doubt there are many other formulations and other geo- 
metric points of view which also reveal the nature of 
the problem; however, the equations that have been pre- 

+ cos w sin E d 1  - e? - e sin w ]  
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Type of Data L'ariables Determined 

a ,  e ,  x, 1 1 ,  l 2 ,  ml, m2, 

a ,  e ,  x, n1, n ~ ,  El,  
El,  EP, Ea 

E P ,  Ea, E4, E ,  

Optical or 

Range 
angle radar 

Doppler 

Angles plus 
range 

Angles plus 
doppler 

Range plus 
doppler 

~~- 

Eriuation. 

= a[Zi (cos E - e )  + l 2 - \ / 1  - e* sin E ]  
\?j = a[m1 (cos E - e )  + m2d1  - e* sin E ]  

z = a[nl  (cos E - e )  + n ? d / l Y 2  sin E ]  

Observ- 
ables 

a, e ,  x, 11, 1 2 ,  mi, m2, 
121,  n?, El. E2 

a ,  e ,  x, 1 1 ,  1 2 ,  mi, m2, 

nl, n!, El,  E2 

a ,  e ,  x, n ~ ,  n?, E,,  
E P ,  E S  

No. of 
Ibserva- 
tions 

( x  = all1 (cos E - e )  + Z P d l  - e2 sin E ]  
y = a[m,  (cos E - e )  + m 2 d 1  - e* sin E ]  
z = alnl (cos E - e )  + n2-\/l - e2 sin E ]  

y = a[mi (cos E - e )  + m ? d G *  sin E ]  
( x  = a[Zi (cos E - e )  + L P - \ / / ~  - e2 sin E ]  

Z = an(-nl sin E + nP-\//l - e2 cos E ) /  

z = a[n1 (cos E - e )  + n?-\/\/l - e2 sin E ]  
Z = an(-n,  sin E + nP-\/l - e* cos E ) /  

1 
1 
i 

(1 - e cos E )  

(1 - e cos E )  

~~ 

No of 
Equations 

g + i = i a  

10 

10 

8 + 3 = 1 1  

8 + 3 = 1 1  

9 

so. of 

F'n";'- 
I 

No, of Equations 1 Variables Determined 

a ,  e ,  x, nl, n2, E l ,  (-nl  sin E + n22/1--ez cos E )  
E2, Es, Eq, Es 

I - e cos E + ( m ~  sin et + n2 cos &)-\/I - e* cos E ]  
+ ae[(ml cos et - n1 sin e t )  (cos E - e )  
-t ( m ~  cos et - n2 sin et)-\/1 - e* sin E ]  

a ,  e ,  x, ml, m,, n1, n2, 
E I ,  Ez, E s ,  Eq, Es. Eg' 

I 

Determinacy 

Yes 

Yes (no Q) 

Yes (no Q) 

No 

No 

Yes (no Q) 

Type of Data 

Optical 

Range 

Range-rate 

- 

Ibserv- 
ables 

x ,  Y 

Z 

2 

TABI,E 3 
Moon in Motion 

- -~ __ ~- 

Equations Deter- 
i minacy 
I 

so 

Yes 

Tes 

sented are direct and do not involve complicated manip- 
ulations such as do the methods presented in Smart 
(Ref. 1). 

In  conclusion, it is appropriate to indicate how these 
equations can be implemented to form a tool for estimat- 
ing quantitatively how well an orbit can be determined. 
John D. Reichert (Ref. 2)  has done just this in a 
short study in which he computed the correlation 
matrix and standard deviations over a wide range of 
conditions for a lunar satellite. 

In  Reichert's formulation, d i  is considered to be any 
data type. Then 
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(3-1) 

where the a, are the orbital parameters, and the partial 
derivatives may be obtained from Eqs. ( l) ,  ( 2 ) ,  ( 8 ) ,  
and (10). If the matrix of coefficients be denoted by A :  

(3.5) I1 ad, I1 
A = IIa(Y,(l 

then the character of the matrix A describes the de- 
terminacy of the az . In  particular, if A is a square, 
nonsingular matrix, it will be possible to solve for the 
da,. In  general, however, there will be many more 
data points than orbital parameters so that it will 
be necessary to adopt a statistical approach. In  brief, 
the correlation matrix, A, for the error estimates in 
the orbital parameters is given by 



A = (ATA)-’ATAJ(ATA)-’ (36) 

A a  = (ATA)-’AT A d  ( 3 7 )  

while the parameters themselves are given by 
+ + 

in which A T  means A transpose, A-’ means A inverse, 

is the covariance nlatrix of the obserrations, A d  

is the set of obs~vatioils and A a the set of orbital 
parameters. 

Reichert’s study covers the case of a lunar satellite 
tracked by doppler radar over a time interval ranging 
from one orbit to  one month. This corresponds to the 
case of Moon in motion in the present discussion. 

The results of Reichert’s analysis are exhibited in 
terms of numerical values of elements of the A matrix, 
or equivalently in terms of standard deviation and 
correlation coefficients for the orbital elements. -kxord- 
ing to these results it appears that there will be no 
problem in deternlining a lunar orbit from doppler 
data alone, and Kith reasoilable accuracy provided, 
the doppler data itself is as good as it appears. 

Summary 
The results of this study are sunimarized in Table 2 

for the btationary >\loon and in Table 3 for the Uoon 
in motion. Data combinations not listed may be easily 

+ 
+ 

analyzed by referring to  their associated equations as 
listed in the table. 

In the first rohimn alp listed t>he data types, with 
the corresponding observables listed in the second col- 
umn. The third column shows the minimum number 
of observations required for an  orbit determination, as- 
suming optimum conditions. In  the fourth column, the 
first integer identifies the number of equations arising 
directly from the observations, including the time equa- 
tions. The second digit specifies the number of auxiliary 
equations associated with the relations among the direc- 
tion cosines ll  , 1 2 ,  ml , m? , and nl, n 2 .  

The Variables-determined column identifies the un- 
known variables appearing explicitly in the equations. 
When the direction cosines are determined, the values 
of W ,  Q, and i niay not be determinate. In  a physical 
sense, this usually means that the direction of motion 
of the satellite is not determinate. The last column 
indicates determinacy. 
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